Gap engineering in strained fold-like armchair graphene nanoribbons

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport Gap Engineering in Zigzag Graphene Nanoribbons

Graphene, a recently discovered form of carbon, has received much attention over the past few years due to its excellent electrical, optical, and thermal properties [1]. With an extraordinary carrier mobility and high current density [2], graphene's application in electronic devices is promising. As a zero bandgap material, pristine graphene cannot be used as a semi-conducting channel in transi...

متن کامل

Energy band-gap engineering of graphene nanoribbons.

We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurem...

متن کامل

Flat-band ferromagnetism in armchair graphene nanoribbons

We study the electronic correlation effects in armchair graphene nanoribbons that have been recently proposed to be the building blocks of spin qubits. The armchair edges give rise to peculiar quantum interferences and lead to quenched kinetic energy of the itinerant carriers at appropriate doping level. This is a beautiful one-dimensional analogy of the Landaulevel formation in two dimensions ...

متن کامل

Ultra-narrow metallic armchair graphene nanoribbons

Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, w...

متن کامل

Electronic properties of twisted armchair graphene nanoribbons

We study the effect of twist on the electronic structure of H-terminated armchair graphene nanoribbons, for both relaxed and unrelaxed unit cell size. We investigate the band gap change as a function of the twist angle for different ribbon widths. In the case of unrelaxed unit cell size, the band gap closes for smaller twist angles as opposed to relaxed unit cell size. We calculate strain energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2017

ISSN: 2469-9950,2469-9969

DOI: 10.1103/physrevb.95.045425